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Abstract
We calculate certain estimates for the solution of the characteristic problem of
the wave equation reduced to first order, in terms of the free data prescribed on
two transverse surfaces, one of which is characteristic. Estimates of such kind
ensure the stability of the solutions under small variations of the data. Similar
estimates exist for the derivatives of the solution as well.

PACS number: 02.30.Jr

1. Well posedness and characteristic problems

Given a system of partial differential equations where a unique solution exists for some given
data, oftentimes it is necessary to know how sensitive the solution is to small variations of the
data. One would not want the equations to amplify any uncertainty in the data beyond control.
When, in addition to existence and uniqueness, the equations guarantee the stability of the
solution under small perturbations of the data, the problem is referred to as well posed [1].

There are two components to a well-posed problem. First there are the equations
themselves, which are usually defined only up to transformations of variables and
coordinates—respecting the differential order of the equations. Second, there is the data set,
usually an appropriate set of values prescribed on a chosen surface. In coordinate-independent
terms, the choice of data surface determines the type of problem for the given equations. If
one seeks a solution in the interior of a region bounded by a closed data surface, we have a
boundary problem. If the solution is needed on half of the available space of independent
variables (x1 � 0 in the appropriate choice of coordinates for the problem), then we have an
initial value problem, or ‘Cauchy problem’. It should come as no surprise that some equations
have at the same time a well-posed problem and an ill-posed problem. The textbook example
is the two-dimensional Laplace equation uxx + uyy = 0, for which the boundary problem is
well posed but the initial value problem is not. A less acknowledged but equally powerful
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example is the wave equation uxx − utt = 0, for which the reverse statement holds. Typically
elliptic equations admit well-posed boundary problems, whereas hyperbolic equations admit
well-posed initial value problems.

In the case of hyperbolic equations, there are also characteristic problems. In this case, for
a unique solution to exist, the data must be prescribed on two intersecting transverse surfaces,
one of which is ruled by characteristic curves and we assume the other one is not [2]. On the
other hand, characteristic problems are not to be confused with mixed initial-boundary value
problems, where values are prescribed on two intersecting surfaces but such that the initial
surface is not characteristic, because in such mixed problems the number of data variables
necessary to specify a unique solution is larger than in the initial value problem of the same
equations. The characteristic problem of a set of equations requires the same number of data
as the corresponding initial value problem. In characteristic problems, the method of solution
is an adaptation by Duff of the Cauchy–Kowalewsky theorem for initial value problems. As
for the stability of the solutions, there does not seem to have been a great deal of interest.
Characteristic problems are usually neglected in favour of their very powerful cousins, the
initial value problems, which require only one correctly chosen data surface. Still, in some
physical contexts such as general relativity, characteristic problems have traditionally been
very fruitful in connection with issues of radiation [3], and have been used methodically to
obtain numerical solutions [4]. The question of well posedness in such cases becomes quite
relevant.

Here the stability of the solutions of the characteristic problem of the wave equation in
three spatial dimensions, reduced to first order, is explored by means of a particular method.
The method is analogous to the energy estimates used in the case of initial value problems
of first-order hyperbolic systems [1, 5]. The principle behind the method is to obtain, as a
consequence of the equations, an inequality by which the ‘size’ of the solution is bounded
by the ‘size’ of the data, namely to estimate the solution in terms of the free data. In linear
problems, the estimate applied to the difference between two solutions that are initially close
trivially ensures stability.

In section 2 we include a brief expository review of the method for the initial value problem
of the wave equation reduced to first order. This is done with the purpose of developing a
parallel with either characteristic planes or cones as data surfaces in sections 3 and 4. It is
found that a certain kind of estimate for the solution in terms of the data can be established
in both cases, demonstrating that these two characteristic problems for the wave equation are
well posed. Section 5 contains concluding remarks including a brief overview of the status of
the question of stability of characteristic problems in a more general sense. We hope to uphold
that even classic problems such as the wave equation have the potential for new insights when
viewed from a different angle.

2. The Cauchy problem of the wave equation reduced to first order

We have the wave equation in Cartesian coordinates in three spatial dimensions given by

ψtt = ψxx + ψyy + ψzz (1)

where a subscript xa ≡ (t, x, y, z) denotes partial differentiation with respect to the coordinate
xa , as usual. We do not deal with this equation directly, but prefer to ‘reduce’ (actually, extend)
the equation to a system of first-order equations. In doing so, one substitutes the original
problem with a problem that has more solutions, among which the solutions to the original
problem can be singled out.
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We define new variables U ≡ ψt, P ≡ ψx,Q ≡ ψy and R ≡ ψz. In terms of these
variables, (1) is equivalent to the following system:

Ut = Px + Qy + Rz, (2a)

Pt = Ux, (2b)

Qt = Uy, (2c)

Rt = Uz. (2d )

ψt = U, (2e)

in the sense that all the solutions ψ(xa) of (1) are solutions of (2). In order to single them out
we need to impose the following constraints on the initial data surface:

Cx ≡ P − ψx = 0, (3a)

Cy ≡ Q − ψy = 0, (3b)

Cz ≡ R − ψz = 0, (3c)

which remain satisfied because their t-derivatives vanish
(
Cx

t = Cy
t = Cz

t = 0
)

by virtue of
(2). However, we do not have to restrict the data for the estimates that follow, so we ignore
the constraints from now on. In matrix notation the system (2) has the form

Aa∂av + Dv = 0 (4)

where v = (U, P,Q,R,ψ),At is the identity matrix, the other three matrices Ai are
symmetric, D has all vanishing coefficients but one (of value −1) and summation over
repeated indices is understood. Multiplying on the left with v we have

vAa∂av + vDv = 0, (5)

and, because the matrices are symmetric, we can extract the partial derivatives to obtain a
‘conservation law’

∂a(vAav) + 2vDv = 0. (6)

Because we are not interested in a boundary-value problem, we now assume that the fields
either decay sufficiently fast at infinity so that their volume integration in the entire space R3

is finite, or else they are periodic, so that we can restrict attention to a box in R3. Equivalently,
we assume that the fields have a Fourier transform or series. With this assumption we can first
split off the time part of the conservation law (6), and then integrate it in the spatial volume V
(denoting either R3 or a box)

d

dt

∫
V

vAtv d3x +
∫
V

∂i(vAiv) d3x + 2
∫
V

vDv d3x = 0. (7)

With our assumptions, the second term evaluates to zero. In the first term we have the L2

norm of the fields, because At is the identity matrix and thus∫
V

vAtv d3x = ‖v(t, ·)‖2. (8)

Since vDv = −Uψ , equation (7) is equivalent to

d

dt
‖v(t, ·)‖2 =

∫
V

2Uψ d3x. (9)
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Finally, since 2Uψ � U 2 + ψ2 then
∫
V 2Uψ d3x � ‖v(t, ·)‖, so we have

d

dt
‖v(t, ·)‖2 � ‖v(t, ·)‖2 (10)

which implies

‖v(t, ·)‖2 � et‖v(0, ·)‖2 (11)

and we have our estimate of the ‘size’ of the solution in terms of the ‘size’ of the initial data.
Since the system is linear, the difference of two solutions is also a solution, so small variations
of the initial data result in small variations of the solution, at least for small enough times.
The exponential factor is there because of the presence of undifferentiated terms in (2). In
spite of the exponential factor, the inequality shows that the solution depends continuously
on the data, so that the variation in the solution at any time can be controlled by refining the
accuracy of the data. Nonetheless, as usual [5], the inequality is useless for large values of t
for numerical purposes, where the interest resides in explicitly estimating the error in a given
solution that starts with no less than round-off error.

Alternatively, one can get a better estimate in this case by treating ψ separately from the
rest of the variables. Clearly the equations for the variables U,P,Q and R decouple from ψ ,
and have no undifferentiated terms. A solution can be found independently of the value of ψ ,
and can be estimated also independently of ψ . If we reproduce the preceding reasoning with
v ≡ (U, P,Q,R), then we have equation (4) with D = 0, which leads to

d

dt
‖v(t, ·)‖2 = 0, (12)

and consequently

‖v(t, ·)‖2 = ‖v(0, ·)‖2, (13)

without an exponential factor. Then ψ can be estimated by

ψ = ψ |t=0 +
∫ t

0
U dt ′ (14)

which is the solution of ψt = U for known source U and given initial data at z = 0. This
leads, for instance, to an estimate of the form

ψ2 � 2ψ |2t=0 + 2

(∫ t

0
U dt ′

)2

. (15)

Most remarkably, one can also control the smoothness of the solution. The spatial
derivatives of the fields have estimates in terms of the spatial derivatives of the initial data.
One can see this easily by taking a spatial derivative ∂i of the system (2a)–(2d ), which thus
becomes an evolution system for the variables vi = (Ui, Pi,Qi, Ri) of exactly the same kind
as that for v, leading to estimates for each spatial derivative vi in terms of the same spatial
derivative of the initial data

‖vi(t, ·)‖2 = ‖vi(0, ·)‖2, (16)

for i = x, y, z alternatively.
As a hyperbolic equation, the wave equation admits characteristic lines at 45◦ with the

time axis in all spatial directions from any fixed point, that is all light-like straight lines through
any point. A (hyper)surface that has a null (light-like) normal at all points is automatically
ruled by characteristic lines and is referred to as a null surface. A null surface is simply the
evolution of a wavefront forward in time out of any given initial shape. Any null surface can
be chosen as the data surface of a characteristic problem. Thus there are infinite ways to set
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up a characteristic problem for the wave equation. But there are two aesthetically appealing
cases. The first case is that of a null plane acting as the data surface (the evolution of a plane
wavefront). Of course, there are null planes in all possible directions, so this may not be useful
unless our problem has a particular preferred direction. If there is no particular preferred
direction then null cones are suitable (the evolution of a spherical wavefront out of some point
of origin). These two choices of characteristic data surfaces lead to similar characteristic
problems, which are examined in the following two sections.

3. Well posedness of the characteristic problem of the wave equation with a plane
characteristic data surface

The simplest characteristic problem of the wave equation prescribes data on a plane
characteristic surface. In addition, we use a plane time-like surface to prescribe the necessary
complementary data. In section 3.1 we examine the stability of the solutions under small
perturbations of the data. Estimates for the derivatives of the solutions are derived in
section 3.2.

3.1. Estimate of the solution

We transform coordinates (t, x, y, z) → (u, x, y, z) with

u = t − z, (17)

so that the level surfaces of u are null planes. The wave equation (1) in these coordinates reads

2ψuz − ψxx − ψyy − ψzz = 0. (18)

The second derivative with respect to u does not appear in the equation, so we only need to
define three additional variables to reduce the equation to a first-order system. We have, as
before, P ≡ ψx,Q ≡ ψy and R ≡ ψz. In terms of these variables, (1) is equivalent to the
following system:

2Ru = Px + Qy + Rz, (19a)

Pz = Rx, (19b)

Qz = Ry, (19c)

ψz = R, (19d)

in the sense that all the solutions ψ are contained in the set of solutions of this system. This
system has a unique solution in the ‘wedge’ space with u � 0 and z � 0 if the value of R
is prescribed on the null surface u = 0 and the values of P,Q and ψ are prescribed on the
surface z = 0. This is referred to as the canonical form of the characteristic problem of the
wave equation [2]. Like all characteristic problems in canonical form, it consists of two sets
of equations: one of them internal to each characteristic surface (equations (19b)–(19d )), and
the other moving from one characteristic surface to the next (equation (19a)). The field R is a
normal variable, whereas P,Q and ψ are referred to as null variables [2]. We can single out
solutions to the original second-order wave equation by choosing data so that the constraints
(3a) and (3b) are satisfied along the surface z = 0. They remain satisfied everywhere because
∂zCx = ∂zCy = 0 by virtue of (19).

As in the case of the initial value problem in the preceding section, we see that the
equations for (R, P,Q) decouple from ψ . Therefore, we can find and estimate a solution
independently of ψ . Disregarding equation (19d ), the rest of the system (19) has the form

Auv,u + Azv,z + Axv,x + Ayv,y = 0 (20)
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Figure 1. The ‘hyper-prism’ of integration for the characteristic problem with a null-plane
data surface. The top boundary surface �T lies at u + z = T constant and has measure
d�T = dx dy dz/

√
2. The surface �u is a null plane at u = 0 and has measure d�u = dx dy dz.

The surface �z lies at z = 0 and has measure d�z = du dx dy. Both surfaces �u and �z are data
surfaces for the characteristic problem.

where v = (R, P,Q), and the matrices are given by

Au =

2 0 0

0 0 0
0 0 0


 Az =


−1 0 0

0 1 0
0 0 1


 (21)

Ax =

 0 0 −1

0 0 0
−1 0 0


 Ay =


 0 0 −1

0 0 0
−1 0 0


 . (22)

Because all the matrices Aa (a = u, x, y, z) are symmetric, it follows that
∂a(vAav) = 0, (23)

so we obtain a ‘conservation law’ of the form ∂aJ
a = 0. Integration of this conservation law

on any given volume in R4 (of measure d4x = du dz dx dy) gives us relationships between the
flows of vAav across the surfaces that enclose such volume. We choose our four-volume of
integration to be a ‘hyper-prism’, bounded by the surfaces u = 0 (of outward pointing normal
n1

a = −δu
a ), z = 0 (of outward pointing normal n2

a = −δz
a) and u + z = T for a fixed constant

T (of outward pointing normal n1
a = (δu

a + δz
a)/

√
2). Assuming that the fields admit Fourier

transforms in the x and y directions, we let the ‘hyper-prism’ extend to infinity along x and y,
or alternatively we can have a periodic boundaries in x and y. Our four-volume of integration
V4 is represented in figure 1. Integrating on this ‘hyper-prism’ we find

0 =
∫
V4

∂a(vAav) d4x =
∫

u+z=T

v(Au + Az)v dz dx dy −
∫

u=0
vAuv dz dx dy

−
∫

z=0
vAzv du dx dy. (24)

Since, by (21), Au + Az is the identity matrix, then v(Au + Az)v = R2 + P 2 + Q2 and its
integral on the surface �T may define a (positive-definite) norm of the solution,

‖v‖2
T ≡

∫
u+z=T

v(Au + Az)v dz dx dy, (25)
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which may be used as a measure of the ‘size’ of the solution generated by data on u = 0
and on z = 0. On the other hand, vAuv = 2R2 and vAzv = −R2 + P 2 + Q2. With these
expressions, (24) can be written as

‖v‖2
T = 2

∫
�u

R2 d�u +
∫

�z

(−R2 + P 2 + Q2) d�z (26)

which trivially implies the following inequality:

‖v‖2
T � 2

(∫
�u

R2 d�u +
∫

�z

(P 2 + Q2) d�z

)
. (27)

The right-hand side is a positive-definite measure of the ‘size’ of the free data, properly taking
into account both data surfaces. This differs markedly from other possible energy-like norms
that could be defined, mirroring the Cauchy problem, by integrating the squares of all fields
on the initial characteristic surface. When all fields are integrated on the surface at a fixed
value of u, one is, in a sense, over-counting the null data, thus a literal translation of the energy
of the Cauchy problem does not, in fact, play the intended role. In contrast, the inequality
(27) functions as the proper characteristic analogue of the standard estimate for initial value
problems. Small data R on u = 0 and P,Q on z = 0 result in small values of R,P and Q
within the ‘wedge’ space u � 0, z � 0.

Once R is known, we can estimate ψ by integrating equation (19d ) with given values on
z = 0

ψ = ψ |z=0 +
∫ z

0
R dz′, (28)

which implies, for instance,

ψ2 � 2ψ |2z=0 + 2

(∫ z

0
R dz′

)2

. (29)

3.2. Estimates of the derivatives

It is not as simple to estimate the derivatives of the variables in terms of the derivatives of the
data as it is in the case of the Cauchy problem discussed in the previous section. However,
with some ingenuity, we can show that the derivatives Rx,Ry, Rz, Px, Py, Pu,Qx,Qy and Qu

can be controlled with the choice of data. These play a role that is analogous to that of the
space derivatives in the case of the Cauchy problem discussed in section 2—Pz,Qz and Ru

are already given by the system of equations (19), and can be estimated directly by the use of
the system of equations, as in the case of the Cauchy problem. Of these, Rx,Ry, Rz should be
treated as normal variables and the rest as null variables. If so, the data for Rx,Ry, Rz can be
obtained from the derivatives of the data for R and we avoid the introduction of more arbitrary
data (likewise with the rest of the first-order variables). With this in mind, we obtain equations
for Rx,Ry, Rz by applying ∂i to (19a). Every appearance of Pz or Qz in the result is substituted
in terms of the derivatives of interest by the use of (19b)–(19c). For Px,Qx, Py,Qy, Pu and
Qu, we apply ∂x, ∂y and ∂u, respectively, to (19b)–(19c) and substitute all appearances of Ru

in terms of the other derivatives of interest by the use of (19a). There is some freedom in
choosing the ordering of partial derivatives that converts the resulting second-order system
into a first-order one. The following results from one of such choices:

2∂uRx = ∂xPx + ∂yQx + ∂xRz, (30a)

2∂uRy = ∂xPy + ∂yQy + ∂yRz, (30b)
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2∂uRz = ∂xRx + ∂yRy + ∂zRz, (30c)

∂zPx = ∂xRx, (30d )

∂zQx = ∂yRx, (30e)

∂zPy = ∂xRy, (30f )

∂zQy = ∂yRy, (30g)

2∂zPu = ∂xPx + ∂xQy + ∂xRz, (30h)

2∂zQu = ∂yPx + ∂yQy + ∂yRz. (30i)

This is again a characteristic problem in the canonical form. Note that the first seven equations,
(30a)–(30g), decouple from the last two, since they involve all the variables except Pu or Qu.
Thus Rx,Ry, Rz, Px, Py,Qx and Qy can be found without knowledge of Pu or Qu. Once
they are known, they can be used as known sources in the right-hand side of (30h)–(30i) to
integrate Pu and Qu via

Pu = Pu|z=0 +
1

2
∂x

∫ z

0
(Px + Qy + Rz) dz′, (31a)

Qu = Qu|z=0 +
1

2
∂y

∫ z

0
(Px + Qy + Rz) dz′. (31b)

For this reason, we now restrict attention to the subsystem (30a)–(30g). It constitutes a
characteristic problem of the form

Ba∂aw = 0, (32)

for w = (Rx, Ry, Rz, Px,Qx, Py,Qy) where the four principal seven-dimensional matrices
Ba are symmetric and have constant coefficients, which implies a conservation law

∂a(wBaw) = 0. (33)

Integrating this conservation law on the ‘hyper-prism’ we have∫
u+z=T

w(Bu + Bz)w dz dx dy =
∫

u=0
wBuw dz dx dy +

∫
z=0

wBzw du dx dy. (34)

Since wBuw = 2
(
R2

x + R2
y + R2

z

)
and wBzw = −R2

z + P 2
x + Q2

x + P 2
y + Q2

y , this equation
reads explicitly∫

�T

(
2R2

x + 2R2
y + R2

z + P 2
x + Q2

x + P 2
y + Q2

y

)
d�T = 2

∫
�u

(
R2

x + R2
y + R2

z

)
d�u

+
∫

�z

(−R2
z + P 2

x + Q2
x + P 2

y + Q2
y

)
d�z, (35)

which trivially implies

‖w‖2
T � 2

(∫
�u

(
R2

x + R2
y + R2

z

)
d�u +

∫
�z

(
P 2

x + Q2
x + P 2

y + Q2
y

)
d�z

)
. (36)

Here the norm of the derivatives w is the natural extension of the norm of the solution v to
seven dimensions, defined by

‖w‖2
T ≡

∫
�T

(
R2

x + R2
y + R2

z + P 2
x + Q2

x + P 2
y + Q2

y

)
d�T . (37)
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The inequality (36) gives us an estimate of the size of the derivatives of interest in terms of the
derivatives of the free data, accounting for all the free data without over-counting, in a manner
similar to the estimates obtained in the case of the standard initial value problem, except that
Pu and Qu are treated in a special manner, that is as solutions of ordinary differential equations,
equations (30h)–(30i). Therefore, the derivatives of the solution of the characteristic problem
of the wave equation are a priori under control.

4. Well posedness of the characteristic problem of the wave equation
with a null cone data surface

The case of data prescribed on a null cone shares all the conceptual features of the case of a null
plane. However, it becomes technically much more involved, essentially due to the presence
of non-constant coefficients in the expression of the wave equation in spherical coordinates.
The estimates of the solution in terms of the data can be derived in a manner similar as the case
of a null plane, and are obtained in section 4.1. In order to estimate the derivatives, however,
new tools are necessary, which are developed in section 4.2.

4.1. Estimate of the solution

If we wish to prescribe data on a null cone, it is convenient to transform to spherical coordinates
(x, y, z) → (r, θ, φ), in which case the wave equation (1) reads

ψtt − 1

r
∂rr (rψ) − 1

r2 sin θ
∂θ (sin θψθ) − 1

r2 sin2 θ
ψφφ = 0. (38)

For convenience we define the new variable

g ≡ rψ (39)

and change θ to a linear coordinate θ → s ≡ cos θ , obtaining

gtt − grr − 1

r2
∂s((1 − s2)gs) − 1

r2(1 − s2)
gφφ = 0. (40)

Now we change coordinates (t, r, s, φ) → (u, r, s, φ) via

u = t − r, (41)

and the wave equation (40) becomes

2gur − grr − 1

r2
∂s((1 − s2)gs) − 1

r2(1 − s2)
gφφ = 0. (42)

In order to turn it into a first-order problem we define R ≡ gr, P ≡ gs

√
1 − s2/r and

Q ≡ gφ/(
√

1 − s2r). We obtain the following system:

2Ru = Rr +

√
1 − s2

r
Ps +

1

r
√

1 − s2
Qφ − sP

r
√

1 − s2
(43a)

Pr =
√

1 − s2

r
Rs − P

r
(43b)

Qr = 1

r
√

1 − s2
Rφ − Q

r
(43c)

gr = R. (43d)
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For a unique solution to exist in the region of R4 limited by a worldtube of radius r0 and a null
cone at u = 0, this system requires prescribed values of R on the null surface �u at u = 0,
and values of g, P,Q on the worldtube �r at r = r0. As in the previous case, the variables
P,Q,R can be obtained with no knowledge of g, and so can their estimate. Ignoring (43d),
the remaining equations in the system (43) have the form

Auv,u + Arv,r + Asv,s + Aφv,φ = Dv (44)

where v = (R, P,Q), and the matrices are given by

Au =

2 0 0

0 0 0
0 0 0


 Ar =


−1 0 0

0 1 0
0 0 1


 (45)

As = −
√

1 − s2

r


0 1 0

1 0 0
0 0 0


 (46)

Aφ = − 1

r
√

1 − s2


0 0 1

0 0 0
1 0 0


 (47)

D = −1

r


0 s/

√
1 − s2 0

0 1 0
0 0 1


 . (48)

There are two difficulties with this characteristic problem that are absent in the case of null-
plane data of section 3. First, the principal matrices have non-constant coefficients. This is not
an obstacle, though, because, since they are symmetric, we can still obtain a ‘conservation law’.
The second difficulty is that there are undifferentiated terms, which will appear as sources of
the conservation law. Multiplying equation (44) by v on the left, and after combining terms
appropriately, we have

(vAuv),u + (vArv),r + (vAsv),s + (vAφv),φ = 2vD̃v, (49)

or ∂aJ
a = S with J a ≡ vAav. Here we have

D̃ = −1

r


0 0 0

0 1 0
0 0 1


 . (50)

Since vD̃v = −(P 2 + Q2)/r , it follows that

∂a(vAav) � 0. (51)

Thus the presence of the undifferentiated terms in this particular case will not affect the
estimate. We can integrate now this law on a spacetime volume V4, and convert the volume
integral of the divergence into a surface integral over the boundary of V4. We choose a region
of integration limited by �u at u = 0, �r at r = r0 and �T at a constant value of u+r = T +r0,
with −1 � s � 1 and 0 � φ � 2π . The region of integration is represented in figure 2. We
have

0 �
∫
V 4

∂a(vAav) du dr ds dφ =
∫

�T

v(Au + Ar)v dr ds dφ −
∫

�u

vAuv dr ds dφ

−
∫

�r

vArv du ds dφ (52)
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space

time

Σ T

Σu

Σ r

Figure 2. The region of integration for the characteristic problem with a cone data surface. The
top boundary surface �T lies at u + r = T + r0 constant and has measure d�T = dr ds dφ/

√
2.

The surface �u is a null cone at u = 0 and has measure d�u = dr ds dφ. The surface �r is a
worldtube of radius r = r0 and has measure d�z = du ds dφ. Both surfaces �u and �r are data
surfaces for the characteristic problem.

Similarly as in the case of the null-plane data surface, we define

‖v‖2
T ≡

∫
�T

(R2 + P 2 + Q2) dr ds dφ

(53)
=

∫
�T

v(Au + Ar)v dr ds dφ.

With (53), the inequality (52) reads explicitly

‖v‖2
T � 2

∫
�u

R2 dr ds dφ +
∫

�r

(−R2 + P 2 + Q2) du ds dφ (54)

which by the same argument as in the case of the null-plane data surface leads to a similar
kind of estimate

‖v‖2
T � 2

(∫
�u

R2 d�u +
∫

�r

(P 2 + Q2) d�r

)
. (55)

So we see that the ‘size’ of the data on both data surfaces controls the ‘size’ of the solution.
Finally, once R is known, the variable g can be found and estimated by integrating (43d) with
given values on r = r0:

g = g|r0 +
∫ r

r0

R dr ′. (56)

4.2. Estimates of the derivatives

The results of the previous section establish that the size of the solution is controlled
by the size of the free data. We wish to be able to control the size of the derivatives
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Rr,Rs, Rφ, Pu, Ps, Pφ,Qu,Qs and Qφ of the solution in terms of the derivatives of the free
data, as well, since these are the derivatives that play a role analogous to that of the space
derivatives in the case of the Cauchy problem. This will be possible if we can write down a
characteristic system of equations for these nine variables, where Rr,Rs, Rφ will be normal
variables and Pu, Ps, Pφ,Qu,Qs and Qφ will be null variables, as a consequence of the
original system of equations. If we write down a system for the derivatives themselves in a
manner completely analogous to the method employed in section 3.2, the system (43) implies
the following nine equations:

2∂uRs −
√

1 − s2

r
∂sPs − 1

r
√

1 − s2
∂φQs − ∂sRr = − 2sPs

r
√

1 − s2
+

sQφ − (1 + s2)P

r(1 − s2)
3
2

,

(57a)

2∂uRφ −
√

1 − s2

r
∂sPφ − 1

r
√

1 − s2
∂φQφ − ∂φRr = − sPφ

r
√

1 − s2
, (57b)

2∂uRr − 1 − s2

r2
∂sRs − 1

r2(1 − s2)
∂φRφ − ∂sRr

= sRs

r
− 2

√
1 − s2Ps

r2
+

s(P − rPr) − 2Qφ

r2
√

1 − s2
, (57c)

∂rPs −
√

1 − s2

r
∂sRs = −Ps

r
− sRs

r
√

1 − s2
, (57d )

∂rQs − 1

r
√

1 − s2
∂φRs = −Qs

r
− sRφ

r(1 − s2)
3
2

, (57e)

∂rPφ −
√

1 − s2

r
∂sRφ = −Pφ

r
, (57f )

∂rQφ − 1

r
√

1 − s2
∂φRφ = −Qφ

r
, (57g)

2∂rPu −
√

1 − s2

r
∂sRr − 1 − s2

r2
∂sPs − 1

r2
∂sQφ = −2sPs

r2
+

sQφ − (1 + s2)P

r2(1 − s2)
− 2Pu

r
,

(57h)

2∂rQu − 1

r
√

1 − s2
∂φRr − 1

r2
∂φPs − 1

r2(1 − s2)
∂φQφ = − sPφ

r2(1 − s2)
− 2Qu

r
. (57i)

The first seven equations nither involve Pu nor Qu; therefore, we may consider equations (57a)–
(57g) as a system of seven equations for the seven variables Rr,Rs, Rφ, Ps, Pφ,Qs and Qφ ,
the solution of which can be used as a known source for (57h)–(57i). For the moment,
we ignore the last two equations, which we will come back to once we have an estimate
from the first seven. The system (57a)–(57g) has many features that make it unsuitable for
our purposes. Firstly, the undifferentiated function P is involved, but it is not one of our
nine variables. This can be interpreted as a non-homogeneous system of equations for the
seven first derivatives of interest, where P acts as a known forcing source. P presence would
definitely affect any estimate that may be implied by the system as it stands. Secondly, there
are many undifferentiated terms in these equations, making it almost certain that they will
play a role in any estimates. Thirdly, the principal matrices are not symmetric, although their
asymmetry is not severe because the vanishing coefficients appear symmetrically. As we
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know, the symmetry of the principal matrices would lead directly to a conservation law with
a non-vanishing source of undifferentiated variables, our main goal.

The first obstacle is a true impediment as far as we can see. The standard way to derive
estimates for non-homogeneous systems of equations is by means of Duhamel’s principle,
which allows one to express the solution of the non-homogeneous system in terms of the
solution of the associated homogeneous system and forcing source function [5]. We are not
aware of any analogous principle for the characteristic problem. Thus, at the moment we
are forced to consider only homogeneous characteristic problems. Therefore, we must find a
choice of fundamental variables for this system which removes the non-homogeneous terms.

Fortunately, there exists a choice of fundamental variables for equations (57a)–(57g)
which at the same time symmetrizes the principal matrices and eliminates the appearance
of the undifferentiated function P, thus taking care of the two most important deficiencies
of the system of evolution for the derivatives. Instead of using the seven first derivatives as
fundamental variables, we can use the following:

R̂φ ≡ Rφ

r
√

1 − s2
, R̂s ≡ Rs

√
1 − s2

r
, (58)

P̂ φ ≡ Pφ

r
√

1 − s2
, P̂ s ≡ ∂s

(
P

√
1 − s2

)
r

(59)

Q̂φ ≡ Qφ

r
√

1 − s2
, Q̂s ≡ Qs

√
1 − s2

r
. (60)

This re-scaling will necessarily contribute more undifferentiated terms to the system because
of the dependence of the coefficients on r and s. In addition, the undifferentiated function
P is absorbed into the fundamental variable P̂ s . In terms of the variables w = (wi) ≡
(R̂s, R̂φ, Rr, P̂

s, P̂ φ, Q̂s, Q̂φ), the system (57a)–(57g)has the form

Ba∂aw = Dw, (61)

where all the principal matrices Ba are symmetric and given explicitly by Bu
ij =

diagonal(2, 2, 2, 0, 0, 0, 0), Br
ij = diagonal(0, 0,−1, 1, 1, 1, 1) and Bs

ij = Bφ
ij = 0 except

Bs
13 = Bs

14 = Bs
26 = −

√
1 − s2

r
(62)

Bφ
15 = Bs

23 = Bs
27 = − 1

r
√

1 − s2
. (63)

The matrix D has coefficients that depend on r and s but not on the unknown variables. The
explicit expressions of Dij are of no relevance for our purposes because they are sufficiently
generic to force us to consider the most general case. Multiplying by w on the left, equation (61)
implies

∂a(wBaw) = wD̃w, (64)

with D̃ = 2D + ∂aB
a. Integrating (64) on the volume V4 enclosed by �T ,�u and �r we find∫

�T

w(Bu + Br)w d�T −
∫

�u

wBuw d�u −
∫

�r

wBrw d�r =
∫
V4

wD̃w dV4. (65)

We define

‖w‖2
T =

∫
�T

w2 d�T (66)
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with w2 ≡ ∑
i w

2
i . Then, exactly as in section 3.2, and because Bu +Br is the identity matrix,

equation (65) implies

‖w‖T � 2

(∫
�u

R2
r + R̂s2 + R̂φ2 d�u +

∫
�r

P̂ s2 + P̂ φ2 + Q̂s2 + Q̂φ2 d�r

)
+

∫
V4

wD̃w dV4.

(67)

The presence of the undifferentiated terms is a complication to the estimate of w in terms
of the free data on both surfaces. This complication, however, can be resolved in a manner
analogous as the case of the initial value problem dealt with in section 2. First note that

wD̃w � cw2 (68)

where c = max(|D̃ij |) in the volume V4. Thus
∫
V4 wD̃w dV4 � c

∫ T

0 dt
∫
�t

w2 d�t . With
this, the inequality (67) implies

‖w‖2
T � 2

(∫
�u

R2
r + R̂s2 + R̂φ2 d�u +

∫
�r

P̂ s2 + P̂ φ2 + Q̂s2 + Q̂φ2 d�r

)
+ c

∫ T

0
‖w‖2

t dt.

(69)

This holds for any fixed value of T, where �u and �r extend as far as their intersection with
the surface at fixed value of u + r = T . If we denote �u,t and �r,t the regions of �u and �r

extending only so far as their intersection with u + r = t � T , we can write

‖w‖2
t � 2

(∫
�u,t

R2
r + R̂s2 + R̂φ2 d�u,t +

∫
�r,t

P̂ s2 + P̂ φ2 + Q̂s2 + Q̂φ2 d�r,t

)
+ c

∫ t

0
‖w‖2

t ′ dt ′

� 2

(∫
�u

R2
r + R̂s2 + R̂φ2 d�u +

∫
�r

P̂ s2 + P̂ φ2 + Q̂s2 + Q̂φ2 d�r

)
+ c

∫ t

0
‖w‖2

t ′ dt ′,

(70)

which holds for any value of t � T . Using this inequality recursively into the right-hand side
of (69) we have

‖w‖2
T � 2

(
1 + cT +

c2T 2

2
+ · · · +

cmT m

m!

)(∫
�u

R2
r + R̂s2 + R̂φ2 d�u

+
∫

�r

P̂ s2 + P̂ φ2 + Q̂s2 + Q̂φ2 d�r

)

+ cm+1
∫ T

0
dt1

∫ t1

0
dt2 · · ·

∫ tm

0
‖w‖2

tm+1
dtm+1 (71)

for any given non-negative integer m. In the limit for m → ∞ the sequence in the right-hand
side converges if cT < 1, in which case we have

‖w‖2
T � 2ecT

(∫
�u

R2
r + R̂s2 + R̂φ2 d�u +

∫
�r

P̂ s2 + P̂ φ2 + Q̂s2 + Q̂φ2 d�r

)
. (72)

This is the final estimate for the derivatives in terms of the derivatives of the free data on both
surfaces. Like in the case of the initial value problem dealt with in section 2, the estimate
involves an exponential factor, essentially due to the presence of undifferentiated terms in the
system of equations for w. As usual in such cases, even though the estimate is useful in order
to prove that the solution depends continuously on the data for any value of T, it is impractical
for large T for the purpose of estimating the error in a numerical solution. In particular, our
proof only guarantees the estimate for T < c−1. Perhaps with greater care, possibly by using
Gronwall’s inequality in integral form, the estimate could be extended to longer values of T.



Estimates for the characteristic problem of the first-order reduction of the wave equation 8653

Since the seven derivatives of interest can be found and estimated independently of Pu

and Qu, they can now be used as known sources for equations (57h)–(57i) written in terms of
the new fundamental variables. The solutions Pu and Qu can be obtained by quadratures as

Pu = r0

r
Pu|r0 +

√
1 − s2

2r
∂s

∫ r

r0

Rr + P̂ s + Q̂φ dr ′, (73)

Qu = r0

r
Qu|r0 +

1

2r
√

1 − s2
∂φ

∫ r

r0

Rr + P̂ s + Q̂φ dr ′, (74)

from the known functions and from free data given on r = r0.

5. Concluding remarks

Summarizing, sections 3 and 4 develop the proofs of the following two theorems:

Theorem 1. Consider equations (19a)–(19c), representing the first-order reduction of the
wave equation in three spatial Cartesian coordinates (x, y, z) and one null coordinate
u = t − z. Given data R|u=0 = f (x, y, z) on the null surface �u at u = 0 with
0 � z � T , P |z=0 = g(u, x, y) and Q|z=0 = h(u, x, y) on the time-like surface �z at
z = 0 with 0 � u � T , the unique solution v = (R, P,Q) periodic in (x, y) satisfies the
estimate

‖v‖2
T � 2

(∫
�u

R2 d�u +
∫

�z

(P 2 + Q2) d�z

)
with ‖v‖2

T ≡ ∫
�T

(R2 + P 2 + Q2) d�T , where �T is the space-like surface u + z = T for
0 � u � T and 0 � z � T .

The derivatives of v are similarly bounded by the derivatives of f, g and h.

Theorem 2. Consider equations (43a)–(43c), representing the first-order reduction of the
wave equation in three spatial spherical coordinates (r, s = cos θ, φ) and one null coordinate
u = t−r . Given data R|u=0 = f (r, s, φ) on the null surface �u at u = 0 with r0 � r � T +r0,
P |r=r0 = g(u, s, φ) and Q|r=r0 = h(u, s, φ) on the time-like surface �r at r = r0 with
0 � u � T , the unique solution v = (R, P,Q) satisfies the estimate

‖v‖2
T � 2

(∫
�u

R2 d�u +
∫

�z

(P 2 + Q2) d�r

)
with ‖v‖2

T ≡ ∫
�T

(R2 + P 2 + Q2) d�T , where �T is the space-like surface u + r = T + r0 for
0 � u � T and r0 � r � T + r0.

The derivatives of v are similarly bounded by the derivatives of f, g and h for small values
of T.

These results are relevant to the stability of the solutions of the wave equation constructed
from data given on two intersecting transverse surfaces, one of which is time-like and the other
one is characteristic. The theorems guarantee that the solutions will be stable under small
perturbations of the data on such two surfaces. Since the existence and uniqueness of solutions
is already guaranteed by Duff’s theorem [2], our result generalizes the standard notion of well
posedness, available in the context of Cauchy problems, to the characteristic problem of the
wave equation.

In the wider context of general interest in characteristic problems of any kind, three
publications posterior to Duff’s pioneering work [2] stand out for relevance and motivation.
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In the first place, Müller zum Hagen and Seifert [6] recognized the value of energy estimates
and correctly characterize the data surfaces and their role in the estimates for all types of
problems, including problems with one or more characteristic surfaces. Perhaps due to the
generic nature of their work, their estimates appear to have treated indifferently the normal
data and the null data, making no distinction between free data and data that propagates within
each characteristic surfaces. This problem is pointed out by Rendall [7], who, in reference to
the Müller zum Hagen and Seifert work, says that ‘they attempted, not entirely successfully, to
give an existence and uniqueness proof by following step by step the treatment of the Cauchy
problem’. Rendall proceeds to detail arguments for existence, uniqueness and stability for
symmetric hyperbolic systems—like the wave equation—in the case of two characteristic
transverse data surfaces. Rendall does conclude that estimates exist on the basis of the well
posedness of the associated Cauchy problem, but unfortunately, offers no explicit estimates of
the solution in terms of the set of free data, which he identifies. Balean [8–10] later calculates
estimates of the energy kind for the wave equation with one characteristic and one time-like
data surface where the null data are treated as a flow of information across a time-like boundary,
and the distinction between the contributions of the free data and the transported data is not
markedly emphasized. All three works deal exclusively with second-order equations, leaving
Duff’s systematic approach to first-order characteristic problems without a follow-up—in a
strictly formal sense. In fact, we have been unable to identify any other published literature
dealing with estimates for characteristic problems of any kind. Sometimes the second-order
formulation of a problem and its associated first-order reduction are regarded as equally valid
and interchangeable, but we find that new insights are often to be gained when a problem (even
a well-understood one) is viewed from a different vantage point, a motivation that underlies
our current work.

The method used here to address the question of stability is quite sensitive to the presence
of undifferentiated terms and is likely to be sensitive to the presence of nonlinear terms as
well. Still, its strength lies in its conceptual features, which depart quite significantly from
the three predecessors already referred to. It is to be hoped that our conceptual framework
will be useful as a general guideline for other characteristic problems. Work is in progress
[11] to extend the method to generic linear characteristic problems for first-order systems of
equations in order to obtain a criterion for ‘manifest well posedness’ that would play a role
analogous to that of symmetric hyperbolicity of Cauchy problems. Our ultimate goal is to
develop new insights into the nature of the characteristic problem of the Einstein equations
in the form pioneered by Sachs [3]. In this respect, see [12–17] and also [4] for a review
including the numerical implementation.
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